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AND THEIR FURMATION BY EXPLOSIONS
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Chief, Explosica Hydrodynamics Division

ABSTRACT: A set of simultaneous ordinary differential
equations 1s derived for the peak pressure and time
factor of shockwaves. These eguations satisfy the
Rankine-lugoniot conditions and the partial differential
equations of fluid dynamics. No particular assumptions
are made as to the nature of the medium, so the equations
hold for any gaseous or liquid medium. For application
to explosion phenomena, expressions for the initlal
conditions are found for the interface between the explo-
sion products and the surrounding medium (which in this
case i1s the place where the shockwave is formed). Rela-
tionships are derived for tvo cases:

(1) that the shockwave 1is observed at a fixed point
(appl%cable to the measurement of airblast
waves).

(2) +that the point of r~%servation moves with the
wedium (applicable to shockwave measurements
in water).
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A THECRY OF THE PROPAGATION OF SHOCKWAVES
AND THEIR FORMATION BY EXPLOSIONS

I INTRODUCTION

1. It has long been recognized that the disturbances
emitted from explosions are shockwaves, l.e., waves

having an infinitely steep front. Such shocﬁ-fronts are
fully described by the well known Rankine-Hugoniot
conditions, whereas for the phenomena behind the front

the hydrodynamic equations of an inviscid fluid, neglecting
gravitational effects, are applicable. It is the objective
of this paper to ccmbine these relations in such a wvay

that information on the change of the pressure of the front
with distance can be obtained. This can be dons only if
the distribution of the pressure behind the front is taken
into account. In our case, the pressure distribution
irmediately behind the front is sufficlently described by
two parameters, the time factor o and the shape factor

qzég . In this paper two different definitions for the

t factor are used, namely:

(2) a/___’(_iﬁ- L,
p\22/ ¢
and
Yo _ L (o4 22 ) %
@) a " by <2¢ + « ()’) ..

# and 1ts derivatives refer to the pressure immediately
behind the shock-front; < is the time, ~ the radial distance,
<« the velocity, a, a reference length (in the study of
explosion phenomena, the radius of the unexploded charge)

and ¢, , a reference velocity (for instance, the sound
veloci{y of the undisturbed medium). These two reference
magnitudes are introduced in order to obtaln the time

factor 3s.a dimensionless magnitude, The time factors

o and o u) are related to the initial decay of the pressure-
time curve which, in the case of o
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Sketch of a pressure-time dlagram.

is obtained by obser i?g the pressure from a fixed point,
but in the case of from a point moving with the
medium. These two cases have analogies in the experimental
measurement of shockwaves due to explosions. In air blast
measurements, the pressure recordlng gauges are usually

so rigidly fixed that they cannot move significantly under
the action of the impinging blast wave. Here o%applies.

For the measurement of underwater shockwaves e gauges

are usually not very rigidly mounted. Consiéering the

high pressures of the shockwave and the relst%vely small
particle displacements in water, the case ¢\U4/ seems to be
more appropriate for underwater explosions. However, it
should be noted that only small differences are to be
expected from these two treatments in the range ~f practical
shockwave measurements.

2. The analysis presented in this paper yields two simul-
taneous ordinary differential equations for the peak pressure
and the time factor as functions of distance. 1In the
equations for the latter magnitude the shape factor appears
as

(O
a
=L

These magnitudes are related to the second derivative of
the pressure with respect to time immediately behind the
front. Again, the first of these refers to a fixed point
of observation, the second, to a point moving with the
medium.
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3. To integrate the differential equations, the shape
factor must be known as a function of distance. This
magnitude depends only on the shape of the wave; no
Information about the pressure or the time scale is
necessary for its evaluation. For instance, if the
pressure-time curve (observed from either of the points

of reference discussed above) is an exponential curve,

the shape factor has the value onej; if 1t is a straight

line the shape factor 1s zero. Shockwaves from explosive
sources have the important property that their shape

factors are constant within an appreciable range of dis-
tance. This holds true particulerly for the initial portion
of an underwater shockwave which, at all distances experi-
mentally investigated, i1s an eXponential curve to a surpris-
ing degree of accuracy.

This fact has first been used by Kirkwood and Bethe [a]*
in the calculation of shockwave phenomena. Followlng their
usage, we call this procedure tiie "peak approximation”.

In our analysis - which is rlgorous up to this point - this

amounts to an a priori assignment of a value to the shape
factor.

4. No assumption of a particular shape of the wave is
incorporated in the equations derived here. This, together
with the rigorous character of these equations, makes it
possible to study the validity of the peak approximation
and to show how sensitive the solutions are to the assumed
shape of the wave.

5. In order to obtain numerical solutions of the differ-
ential equations, the initial conditions must be kncwm.

In the calculation of shockwaves from explosions these
conditions are provided by studying the phenomena at the
interface between the reaction products and the surrounding
nedium, i.e., by studying the formation of the shockwave.

It has often been pointed out that a high-amplitude pressure
pulse must, during propagation, change its shape 1n such a
way that a shock-front is finaily built up. This phenomenon
seldom cccurs with shockwaves due to explosions. The
rapidity with which the pressure 1s bullt up by an explosion
causes the pressure wave to have a steep front from the very
beginning. It is a shock-front which emerges from the
surface of explosion products into the surrounding medium

* Al]l such letters refer to the list of references at
the end of this report.
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a very short time after the detonation of the charge.
Therefore, thils front can provide the initial conditions
for the differential equations for the shockwave pesak
pressure and for the time factor.

6. Several similar approaches to the problem of shock-
waves due to exploslions have been made previously, notably
by Kirkwood and co-workers. The Kirkwood-Bethe theory f[a] -
though very successful in its application to underwater
explosions - 1s based on a propagation theory which 1s not
a rigorous solution of the hydrodynamic equations. The
Kirkwood Brinkley theory ([b] which 1s applicable to any
fluid is a rigorous approach based on energy considerations
and a hybrid form of the Euler and Lagrange equations of
fluid dynamics. The peak approximation (or "similarity
restraint" as it 1s called in that paper) is incorporated
in the final equations by assuming an exponential wave.

7. In the present paper, an attempt 1s made to treat this
Eﬁoblem in a straightforward manner, starting with the
Buler equations. A similar approach has been made previ-
ously in other papers gc - f] . In these papers equation
1.6 or similar expressions are derived in various ways,
hut the treatment 1s not carried much further.

II HYDRODYNAMIC RELATIONS

8. The fundzmental equations for the fluid motion of an
inviscild medium, neglecting the Influence of gravity, are

- S

r

(¢.3) Yy

t+4A‘S',,=-0

The subscripts t or »denote the partial derivatives v _th
respect to these magnitudes. 1In general,

Throughout this paper,# denotes the pressure in excess of
" the pressure of the undisturbed medium, 4, .
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In the above equatlons « is the particle velocity, -
the density and & the entropy. » and z are the space and
time coordinates respectively. Equation (0.3) states that
we are conslidering reversible processes, which s consistent
with the assumption of an inviscid fluid. Equatic.. (0.1)

to (0.3) are not appiicable across discontinuities (shock-
fronts), as dlscussed below.

9. Equation (0.2) 1s written for the case of spherical
symmetry. The case of:cylindrical symmetry is obtained
by omitting the factor 2 of the last term of (0.2), the
plane wave case,by omitting the last term entirely.

10. Since

P o= plp 4, S)

the density can be eliminated in (0.2). Introducing the
sound velocity

- (eg) - (32),

+ b,
%

We obtain from (0.2) and (0.3)

rae 1
(O.‘f) O v Mep t /"z“p K ’EL"‘(:' -0
11. Introducing the notation
W o 2f 2f
“ ot + ? o
(0.1) and (0.4) can be combined to take the form
I (eea) (e+w) 2tk
(0.5') /.—c—-,be + o, = ”
/ —at) (c-«) _ZCU
(0.6) /,T"b'(c - e = — =

¢*“ean be interpreted as the derivative of 4 with

respect to time 2long a "(c+«) - characteristic", 1l.e.,
along a curve for which in the »-# plane

ir
— = ¢t uw
dt
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In general, i}wo denotes the derivative along a g-charac-
teristic for which

ar _
ac Y

12, 1f a fully isentropir fiow is considered Se= 0,5, = 0,
therefore also §, @%@ = 0) 2 we may introduce the Riemann

function which 1s defined by
i;‘:) a
L X Vs
(0.9) and (0.6) can then be transformed into
.7 6r+-4Qf”¢- - e
r
©1) (C—w)i - — Bue

[

which is the well-known Riemann formulation of high-amplitude
waves. These equations are not =lways applicable in the
cases considered here.

13. For the shock-front, thess squations are suppliemented
by the Rankine-Hugonilot conditiorns., These are three
equations which permit«, o, ¢ and the propagation velocity
of the front,u, to be expressed in terms of 4 , as soon

as the equation of state of the medium considered is known.
Here, o denotes the amplitude of the shock-front. There
are tables avallable which give these relations for air,
sea water and fresh water [g - k]. For our purpose we

can consider thatw«, o, ¢ and U are known functions of

at the shock-front.

Since we are interested in the change of the shockwave
peak-pressure (i1.e., the front pressure) with distance,
we use the notation

_d'_f. = i(u)
<
¥ et of
2t X
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That is, we arbitrarily define the derivative along the
v - characteristic (which is equivalent to the shock-
front) as the total derivative.

14%. The concept of the characteristic givcs us a geo-

metrical arproach to our problem. Conslder the “:hzracter-
istic triangle" below.

Figure 2
Characteristic Triangle.

The lines in this figure are drawn in at¢-r plane in such
a way that

along

dzt /
AB dr~ - i
&a J
AE dr “-c
ot /
it e
dt /
FB dr U—
Ve then call
AB the " ¢+« - characteristic"
AE the " ¢-« - characteristic"
AF the " w - characteristic"

FIEB the " U characteristic"
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These lines are not straight lines, since, e.g., 1/U at
E differs generally from the 1/uU at B. fhis character-
istic triangle is based on the fact that c+ru> U which
holds generally and accounts for shock phenomena.

15. In Figure 2, the line FIEB represents the shock-front.
The regime below this line is that of the undisturbed
medium into which the shock propagates; the regime above
represents the shockwave, where there are high pressures
and a particle velocity towards the front.

16. Considering the equations above, we find that (0.5)
holds along the line between A and B anad (0.6), between

A and E. Furthermore, alcng FIEB the Rankine—ﬁugoniot
conditions hold and aiong FA equation (0.3) holds. Thus,
at A we have the same entropy as at F, whereas at B, in
general, the entropy is different. This is because shock-
fronts, which involve irreversible processes, cause an

entropy increment which depends on the ampli%ude of the
front.

17. As far as the thermodynamic state is concerned, we

note that along FA the common adiabatic (i.e., the isentropic)
holds, whereas along FB the Hugoniot adiabatic applies.

Since both of these thermodynamic relationshigs are known,

we can express the thermodynamic state along A as well as
along FB in terms of the pressure along these lines, if

the state at F is known. The same holds for the particle
velocity .« along FB, but not along FA.

Case I Fixed Point of Observation

18. The Peak Pressure. Using the characteristic triangle,
we will now derive the differential equation for the shock-
vave peak pressure as a function of distance. In Case I,
we consider the point of observatlon as fixed.

On integrating (0.5) and (0.6) along AB and AE respec-
tively, we have

(:1) {/_:'A- (4’1 —”A> * (“' - ““) E -2%“—2\8 (t'— t‘)

(12) (;c;)u"(h‘h) - (“A - “s) - _éz:_uzs (tf tl)

8
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vhere the double subscript denotes the average obtained
in the integration.

In this paper, we will be primarily concerned with
first or second order expressions. Hence, these averages
need to be correct only to the first order. For instance,

}7wﬁa then becomes:

8
! RSN N
/""M(‘p”n#Q2 j}T T2 E7;l+(/°)DJ (’b‘ /k*)

With this approximation, (1.1) and (1.2) can be combined
to give

/ /

/ (R /
'_2— ‘(_¢_)A+(;C—).} (‘p’ - bA) - ?h+(/—¢)‘] (#A - #g) + (uﬂ - UE)

/cu J “w
- - [E) + ) e[ + 9] e
19. If we expand (1.3) by means of a Taylor's series,

terms of order zero, one, two, and higher agpear. Consid-
ering only first order terms, equation (1.3) becomes

®

2 /
- 7: ‘?t(tﬂ_tl) - ;? % (ts—tf)
+ =2 (ta‘ ti) + -?Ei(ts_tA) ' 2_:,2(3— ts)‘ 0

All magnitudes without subscript refer to the point I,
i.e., to » and £ . TFor the various differences in#
we obtain the following first order relations:

(r4)

b)

ar
ta—tI = --U—
faY 4
T2t T crw
¢t o eV
L u(e+ U)
C e = Pl ar
t‘ t' (C.v u_)(COU—IL)
e (cou-U) aor

£ ("“)(C'U-u)
where
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Substituting these expressions in (1.4) and dividing by
4 p , we obtain on collecting terms:

ta- 2, (U-
(/'5) (_JI % E'*u(u-u)+ %—/czu — ,,C_J:" aju“)q R QHL”( w) -0

Using the notation

and

r

ol
(1.5) becomes °

P
() % hipo-o

where F, and B, are functlons of the pressure 4 alone:

P o= g;czu,(U-u.)
(A c2¢u.(U-u)f#‘/c’U
$tq l—"?'(u'“)lq

P2 =

U c?o U_(U‘u.)f-;r.‘:"—/’ U—J

When a double subscript appears in functions such as these,
the first subscript refers to the case belng discussed

(I or I1) and the second subscript to the number of the
function. Thus P, is the seconé P-function of Case I.

20. The differential equation jJjust formed has been derived
by other methods (see paragraph 7). For :lnsta.ncc-:’3 equaiions
(0.1) and (0.2) have been combined to give (1.6) directly,
[dy e] .

2l. The Time Factor. In crder to obtain a diffsiential
equation involving quéx , we have to conslder the second
order terms in the expansion of (1.3). Rather than follow-
ing the same lines as in the foregolng paragraphs, we will
cbtain the desired equation by an analytic method in which
the computations are shorter. The two procedures are
analogous, however.

10
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Differentiating (0.2) and (O.4) partially with respect
to Z, we have

/ -
(20) w tuuw, tou o t A" ST L0

“' r

Differentiating (1.6) along U yields

&2 P . dR o dPR, dP
(23) 25 = & () *‘;’(‘71 L g, o)

x ap ap "odp
2 db of X
+ X 74 .I;)l - 12 gy
In addition,
du du A dlu _il’_;
d.t. = dp dte t+ #5 dz
-
2 du d..p ( du AU ' ol |
- U + U dn(> [ F)

du _ B AN el L -ii"\
w‘»[(";ﬁ)u 7Vt e 1

X [ 2 du dR d}’,> (da du du.:]
2Y) +-=|U°" —= (P, = +P —12)+ 2UR —_—
( ) or[ df e dﬁ df’ nh2 o([; ‘.*, )
a’ . du ot By 2 du dU d?a\_()P,l_gli od X
+¥[U = “up #+U"(d/= ab V)| e, o ar
Moreover,
(25) "‘ (d“)-a+Uu+—(uu)

Introducing o as well as (1.6) into (O.4), we obtain

anj__ + Q’“ a

- a

Y o

11
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where ¢, and @,., are functions of A alone. Many such
functions will appear. They are listed for ready reference
at the end of this section. As above, each function is
identified by a double subscript: the first number, 1,
refers to Case I, and the other two give the sequence
number of the function.

22. By differentiation,

d 7 { a9,
;(Uu—’) = . (UO/o, + UF, —dij—)
4
_i ( iQLILL 4 %0 _ X ’ a @ror + UQie X746
av."<UE’ ap O dla) or VU Ty ) 2,  dr

Combining this equation with (2.4%) and (2.5), we obiain an
expression for «,, as follows:

, , e
« - _?‘lg-’. + .%"_ X + Laz_ a? + 29_". - Uu
o

4 s>
ay a, d»r

Substituting for «., in (2.1), we may eliminate «., between
this equation and (2.2) to obtain a single equation in which

#ec and .. appear. We eliminate 4.~ by using the follow-
ing relation:

Ue, o
P Upy, = — —* (‘/’a)

a, dr

so that we obtain the equation

3
Py L Qe X p Qe A, £ Qu 2l
rt a, > a, a, dr

+/°Z “‘t“r_;—/‘ #ob (U-u.)u‘ o F (U—u.) ‘// ¢:)¢ Yy
26)

r v

= l}uu(u_u)] o) _,

2u (U-u) ¢ 2pe2 (U - - (U-u)
JrelUsd (g 2l lue) [ el 7,

12
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23. Solving for « .. and we obtain the
fcllowing results: e’ -Pr? fe ?
u M O/oz x
ro 2V [ NY]
[ r a,

>
n
!

Further, we define

- L mf
a,‘ - # #‘t (C.

Substituting in (2.6) yields the following equation:

,  d ¢
(27) ;é_._a_ + d)/:’ + 4"3“ + ¢/¥f + _LL_¢ qu_

= 0
a, odr * a,~ a, a,
or
da Py P, X 2 X
_ . Bl ¢ =
T d . + PeoX O*—ﬁ‘;g) = 0

Again, the functions denoted by P depend on the shockwave
peak pressure only.

2+, The funciions denoted above by P and ¢ terms are
explicitly:

Qo = U (_/EI:# _2“)

wUP P (U-
@ror ~ fczn - < ;Et )

o= 2 [l ) (& e 4]

13
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7 da d¥ dP du oU
Qov U ? (ﬁt ZL "'Pu“;:') + ?2UEY, 7 e

de dP 2 [du U du
U'p, — =t s uR! (= == + U—¥
0105 12 # # " # # #
ou
0/05 === ’;p Uz o - UQ,,
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b, - — 4c. [e.' +“(U—u)] + /ct Qe

>

uU- U-u) 2 P (U
"_‘j'u; /0,., Qoy (——U_) * Qe Qm + 2/ (U ) Qror

2
2 —_— —‘l“
¢;, _/ca Oy %f Qe Qor R G (U ) Py Qur

- 2“/ (U_“> Qlo' - 2w (U-u) Qs

V)
_2u/(u-“) Q,, + (V-u) [Q,,, (%o—. ’Ez) - & Qm:l

- (U_L‘)LL)/ (Q/o, Qo* Q/onlm) T '-Z(U -u) Q.r (_UU_-‘-‘) c2<0~ Qo™ Que Qw)
* 2/":? (U'll) Q/ol’ + hoe Ez* “ (U'U-)J
¢,, -0 et Qus + %.i Qe Qe * /i<'bJ. _p") Quit (U‘u)%_ﬁ’) Gres

() G G = (T O [ou 5 (u-w)] P,

@,-/"0,., h 'di’ (Q,., Qs * Q:n qu1) - _;_E: Oﬂt— Qm(%" - PIJ

Ps = ~ _£U°_:_ - (U—u);J

ﬁ: = jf‘”‘- 7z Pv
¢ - fu
e.f = # B‘ ¢/'I

15
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Case I1 Moving Point of Observation

25. The Peak Pressure. In Case 11, it is assumed that the
goint of observation moves with the particles of the fluid.
he approach to a differential equation for the shockwzve

peak pressure 1s much the same as the one given in para-
graph 19 for equation (1.6). The characteristic triangle,
Figure 2, takes a slightly different form, as the line AF
must now be considered instead of the line AI. The initial
steps are the same, so that we arrive at equatisn (1.3)
again. Introducing

,.(‘) = ot ouf
instead of p,, we obtain cn expanding (1. 3)

(3/) /c —dﬁ( ) -2-(: ‘f’*(u) (t‘_t’) /7(, ot (6 t‘)
+ _dz_»__if(ta_ t‘)ﬁ— 2“’-(. )_ ?Cu<t —t)

olp
where
b=t = Treu (% b)
t, -t = “Uw<t—t>
e % T @ ,Z:U()U(:L:)u-u) (tA—tr)
-t = m(b~t)

Making these substitutions in (3.1) and dividing through
by t, -t, we obtaln

, 2 gl w]

Zzuc (u- tﬂ)
w

=0

16
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For consistency of notation, let

(w - _ L (W _a,
X : y A c
so that (3.2) becomes
(33) T4 op o™ =0
where
p _ 2ouel (U-u)'2
2 =

U [:e_2 s -&%/cz (U'u)j

PV AV |
za U et + 2 pcf(u-u)]
26. The Time Factor. The procedure of obtaining a differ-

ential equation for the time factor parallels that for
Case I.

Here we define q by

?
Gé@ ...:_({?)Gatfw

2
=;f_(‘f’f> (4’« i E“PM + ot “2ﬂr e ”f’l’)
The differential equation has the form

«) P. P (») QJA&)
(35) G;z{ + ;)’ + ‘%‘ + Pz, aMl (/ + P?‘ 7‘"‘3—[ e D

where the F 's can be expressed in terms of the functions
and # in an analogous way to Case I:

€XD)

& P [ Kl
Pos Fy 2y .
By = B . B

i e L Be = L2

17
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defe,wU N jb_e.zc,U Feo

2
P e b peV TG T

! 200 ! Pu'ﬁu Y- “‘\
e = G+ LG - 20 |- %1(—?")] T NG e e
(U ) Quov Qaw — 2“/ (U —“') Quos — 2uct (’U_“') Que + 2/°2(U-") Qror

p - (b)) 4 pley [Rh Rufd, ﬂ)f_(f_’)_f’
v U PI! U-w Pll Pu \J-P # P/g‘ d#

¢23 - /le“,, + %?0101 Qeos t Quee Ozc'r) - _;;{.Ozu[ t; (P!;’/z 'ﬂ Qz”(U Be P'>}
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III THE FORMATION OF SHOCKWAVES BY EXPLOSIONS

27. The 1nitial conditions for the differential equations
derived above can be obtained for the casc of explosion
phenomena by considering the motion of the interface be-
tween the gaseous reaction products and the surrounding
medium. The conditions of continuity in pressure and
rarticle velocity yleld all the necessary equations for
the initial pressure. The use of the characteristic
triangle is particularly convenient for determining the
initial time factor.

Initial Conditions for the Steady State Explosion

28. Let us consider the idealized stecady state explosion.*

It 1s assumed that the expiosive is converted to gaseous

reaction products in such a way that at the very first

moment the pressure is constant throughout the space

previously occupied by the explosive, and all particles

are at rest. TFor the very beginning of the expansion of

the reaction products at the boundary we have the conditions
L

(+7) w' LAk

(£2) w =g
The asterisk refers to the reaction products of the
explosive, the symbols without asterisk, to the surrounding
med ium. équation (5.1) represents the condition of con-
tinuity of pressure and velocity at the interface. Equation
(5.2) determines the velocity resulting from the expansion
of the initially motionless reaction products. Since these
(at least in the moments we are considering here) undergo
only expansions, which are necessarily isentropic - the
Riemann function is used:

#
-7 |2

i
*It would be more realistic to assume that the charge is
initiated at the center and that a spherical detonation
wave spreads through the charge causing the explosion of
the particles in concentric shellsé one after another.

e

This case can be treated approximately. It will be pre-
sented in a later publication.
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Equations (5.1) and (5.2), together with the equations of
state and the Rankine-Hugoniot equations determine the
pressure 4, and the velocity .« . The procedure 1is well
known and will not be repeated here; see for instance [1].
This ylelds the initial conditions for the differential
equations, giving the pressure versus distance {1.6)or (2.3).

29. Case I. We will now derive an expression for the
initial time factor.

o) Figure 3
Characteristic Triangles at the Interface between
Reaction Products and Medium for the Steady
State Explosion

In Figure 3, the line OelK represents the interface be-
tween the reaction products (left hand side) and the
surrounding medium (right hand side). The regime below
fe0 is that of the unreacted explosive. Between aef we
have the reacticn products at steady state conditions.
The expansion takes place in the regime above Klea. The
line 1EB represents the front of the shock which spreads
into the surrounding medium. At el the pressure of the
reaction products drops instantaneously from ¢, to 4 .

30. To summarize, we have

Y S S
ny) u.'.fg;-‘=Olu:fg‘=u:+o£
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Following the same lines as above, we obtain

G0 g (e = () ()
(d‘: - a—;) +(u; - u:) - --(zii)ﬂ, (tx— t.)
(i - o)+ g o) = () (5t

With (5.4) and «’ = «,, we find by adding the
quantities in (5.5)

( c) ('( ‘*;) " (0} —‘0") * Uy,
=_(?:¢c) (-t )"(ZMCZ(tK ¢ (Zac) (t.- t.)
Considering the first order terms only, we obtain
2z (x) du oq"
(74 o /‘Z') (te ) (# /C) (t.-¢)

_ _ Pucy, _ B 2 ~ t
= 5 @x 5) . 0 t+—%—9

All magnitudes without subscripts refer to the thermo-
dynamic state at the point 1.

30. The differences in t can b: >xpressed as follows:

te =t = (%~ %) Tru

U-w

c+U -~

t,—t = z—l(tx—t,)

‘L"— Q‘— ce
NP L VIS SR

t, — ty = (tx —'tc)

[
tb—-ta, = tK —t
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so that (5.6) becomes

6 (G 1) 4 ) % - 2

dp  pe

(“) can be eliminated by means of
“) dp U-u
/’c( = et Pe

Further substitution for a(f:/d,v and ’Pt yields
', Urw pe B (; I\ U
(57) "(T “‘)( E‘ /’T'/”uuw ow //
_ [ . + cU ( 2ue U'u>
o
au yL c_ c.*Uu- dp t‘« _, v\ Uu
+ Zu.c. < 2c:'u-. )_0
v, 3 L: + wta®

where ¢4, refers to the initial state of the surrounding
medium at r =, . Solving (5.8) for ¢, , we obtain

r-G -56*4 J G
2% @t FE Q03
(fj” q’ = GN _L , 1
6"7‘: f/-r:x—
where
G, = Y
" ‘pco(U-u.)+u.UR,
6 = fwe(Ury) _ Re  _eUR (ﬁ__’_>
L e+l -w re erU-w olp pe
G ¥ - 24" (2cp + )

JCC‘ +ut 4"

Gy, = _Pu""

cUPR, (d‘b /) / U )

b = 0w @ el (G G ruURe
G-functions without an asterisk refer to the surrounding
medium and depend only on the pressure 4, . G¥> refers to
the reaction products of the explosion.
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31. It is of interest to note that if we had set up
Kguations (5.9) using the characteristic KB instead of
the result would have been the same.

32. Case II. Retaining 5{¥ 1n (5.7), we obtain
) _amL >L ug,(_ /)/ e )]_ UP,,ﬁ_L)( e\
dp  pe \erU ro \op  pellesU-u/
2uc U-u Ol I AT S vy
+ v l._ou-u,) * Y, [2 * 2(3eds u.:'+ c,'):l =0
Solving for g ™ , yilelds

'10%(——({4:“—) UPZI(E;— ;c)(&o-u w) + 2"".' _ch‘_lw )

(AZ) “'(u) -~ !
A (7-/._—+"—r-1°) }:b‘_+_&l_u(# /b)(“l‘j_w/
6y a®= G m *fj;
re
where

4 !

9, = —_—
he
2ucfU- du !
G, = Zuefa) e _____)( e )
crlU-w dp  pe/NetrU-u
e 2uet (28 +u7)
G =

Jef 4w +e"

G = Upu(j: ,:)(cotj—u)(&lh)
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IV PLANE AND CYLINDRICAL WAVES

33, It is of interest to know how the functions of the
foregoing sections would look in the case of plane waves
or for cylindrical waves. Once the spherical case has
been worked out, it requires only very simple transfor-
mations to obtain the equations for the two cases mention-
ed above, All of the calculations start with equations
(0.5) and (0.6). In the plane wave case, the term -2cw/
is zero; as a result no ) term will appear. For the
cylindtical wave, the divergence term 1is -cu

’, [
Cylindrical wave:
dp R Fa
/ e SRR . =0
(/¢a) o vy o .
)
dp Pa, Pz a
oo UL TR 7 H )
(2'34) dx * 2r o,
, da P, Py’ P.O? Q.
(372) :*#*%‘*f{z‘(’*?ﬁ)‘”
(u) (a) [C323 (u)
aq f, P, X P X a
#/2) s Iy el L/“’ a:*")" 7
G+ 4+ = g
G,, o g% ;l
(f?;Z) & - —2‘{_1_*_"_. .
P" /Q_ 1y
Ww_ Gl Ggp v G‘n
S e g
7= A
Plane wave:
(764) iff t R =0
(2.34) % pato
dX 2
(274‘) ;:*950‘('*6‘%>=0
w
(%14) %*-Puo(‘m(lf&‘%:—;) =0
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It 1s interesting to note that the functions P, and P,
are the same for the spherical, cylindrical and plane
wave. Hence, 1f they are computed for a particular medium
they may be applied to any one of those types of waves.

In a plane wave ¢, , 1s zero. That means a plane
steady state explosion produces a step wave, whose pressure
is constant with distance. This holds only fairly close
to the charge. Later the rarefactiocn of the explcsion
products becomes effective. A rarefaction wave follows
this step wave and finally covertakes the front thus causing
the pressure to drop. These phenomene are well kncwn
from the theory of the shock tube.
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